1 Method of moving frame for intrinsic equivalence problem

Let M^n be a smooth manifold and G be a Lie subgroup.

Definition 1 A G-structure on M is a reduction of the bundle of frame to a sub-bundle with the structure group G.

Example 1

- O(n)-structure is a Riemannian structure.
- $Gl(m, \mathbb{C})$ -structure is an almost complex structure.
- $Gl^+(n,\mathbb{R})$ -structure is an orientation.

Let M and \tilde{M} be manifolds of dimension n with G-structure. The equivalence problem is deciding whether there exists a structure-preserving mapping $f: M \mapsto \tilde{M}$. Locally, this is a question of existence of solutions for an overdetermined system of partial differential equations of 1st order.

1.1 Cartan's method for the equivalence problem of Gstructure.

Let $\theta = \begin{bmatrix} \theta^1 \\ \theta^2 \\ \vdots \\ \theta^n \end{bmatrix}$ and $\tilde{\theta} = \begin{bmatrix} \tilde{\theta}^1 \\ \tilde{\theta}^2 \\ \vdots \\ \tilde{\theta}^n \end{bmatrix}$ be the fixed frames over M and \tilde{M} respec-

tively, adapted to the G-structure.

Question: when does there exist $f: M \mapsto \tilde{M}$ satisfying $f^* \tilde{\theta}^j = \sum_{i=1}^n a_i^j(x) \theta^i$ where $[a_i^j]$ is a G-valued function on M.